170 research outputs found

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Yhtenäiset vaatimukset lääketieteen ja hammaslääketieteen tohtorintutkinnolle Suomessa

    Get PDF
    Oulussa järjestettiin 13.6.2018 lääketieteen ja hammaslääketieteen tohtorintutkinnon konsensuskokous, jossa käytiin läpi vallitsevia käytäntöjä ja muutostarpeita. Ohjeellinen tutkinnon laajuus on neljä vuotta kokopäiväistä työtä, ja muodollisesti tutkinnon myöntää yhtä yliopistoa lukuun ottamatta aina vastaava tiedekunta. Ohjaajia on tyypillisesti kahdesta kolmeen, ja yksi on pääohjaaja. Seurantaryhmä on käytössä tai ollaan ottamassa käyttöön kaikissa yliopistoissa. Aktiivinen seurantaryhmä tukee merkittävästi ohjausprosessia. Väitöskirjojen asiantuntijoina toimivat esitarkastajat ja vastaväittäjät ovat yleensä muualta kuin suorituspaikan yliopistosta. Osittain tästä syystä suuria eroja eri yliopistojen tohtorintutkinnon vaatimusten välillä ei todettu. Haasteena väitöskirjatyössä on kliinisen työn paine ja nuorten kollegoiden ruuhkavuosien kuormittuminen, mitkä heikentävät mahdollisuuksia tutkimustyöhön. Myönteisiä muutoksia ovat olleet tohtoriopintojen systematisoituminen sekä ohjaamisen tason ja väitöskirjantekijöiden tuen paraneminen. Kaikki osallistuneet kannattivat käytäntöjen vakiinnuttamista ja yhtenäistämistä säännöllisellä konsensuskokoustyöskentelyllä.</p

    The expression of HSP27 is associated with poor clinical outcome in intrahepatic cholangiocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heat shock proteins (HSPs) 27-kDa (HSP27) and 72-kDa (HSP72), are ubiquitous chaperone molecules inducible in cells exposed to different stress conditions. Increased level of HSPs are reported in several human cancers, and found to be associated with the resistance to some anticancer treatments and poor prognosis. However, there is no study of the relationship between HSPs expression and patient's prognosis in intrahepatic cholangiocarcinoma (IHCCA). In this exploratory retrospective study, we investigated the expressions of HSP27 and HSP72 as potential prognostic factors in IHCCA.</p> <p>Methods</p> <p>Thirty-one paraffin-embedded samples were analyzed by immunohistochemical methods using HSP27 and HSP72 monoclonal antibodies. Proliferation rate was assessed in the same specimens by using monoclonal antibody against phosphorylated histone H3 (pHH3). Fisher's exact test was used to assess the hypothesis of independence between categorical variables in 2 × 2 tables. The ANOVA procedure was used to evaluate the association between ordinal and categorical variables. Estimates of the survival probability were calculated using the Kaplan-Meier method, and the log rank test was employed to test the null hypothesis of equality in overall survival among groups. The hazard ratio associated with HSP27 and HSP72 expression was estimated by Cox hazard-proportional regression.</p> <p>Results</p> <p>The expression of HSP27 was related to mitotic index, tumor greatest dimension, capsular and vascular invasion while the expression of HSP72 was only related to the presence of necrosis and the lymphoid infiltration. Kaplan-Maier analysis suggested that the expression of HSP27 significantly worsened the patients' median overall survival (11 ± 3.18 vs 55 ± 4.1 months, P-value = 0.0003). Moreover HSP27-positive patients exhibited the worst mean survival (7.0 ± 3.2 months) in the absence of concomitant HSP72 expression.</p> <p>Conclusion</p> <p>The expression of HSP27, likely increasing cell proliferation, tumor mass, vascular and capsular invasion, might promote aggressive tumor behaviour in IHCCA and decrease patients' survival. Immunohistochemical detection of HSP27 on routine sections may provide a reliable prognostic marker for IHCCA able to influence the therapeutic strategies for this cancer.</p

    A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer’s disease

    Get PDF
    Age-related macular degeneration (AMD) and Alzheimer’s disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case–control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R2 = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele

    Efflux Protein Expression in Human Stem Cell-Derived Retinal Pigment Epithelial Cells

    Get PDF
    Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE -derived diseases, drug testing and targeted drug therapy

    Identification of G1-Regulated Genes in Normally Cycling Human Cells

    Get PDF
    BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease

    Doyne lecture 2016:intraocular health and the many faces of inflammation

    Get PDF
    Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses
    corecore